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ABSTRACT: A mathematical model for the controlled
degradation of polypropylene is presented in this article. A
previous model of this process was extended to predict the
whole molecular weight distribution of the modified resin.
Probability generating functions were applied to transform
the infinite set of mass balance equations of both polymer
and radicals. The integration of the transformed set of equa-
tions yielded the probability generating function transforms.
These transforms were then inverted with two different
inversion algorithms, recovering the molecular weight dis-

tributions of the polymer. The model predictions were com-
pared with our experimental data and other information
taken from the literature. Good agreement was obtained.
The approach presented here is also useful for other poly-
merization and postpolymerization processes. © 2003 Wiley
Periodicals, Inc. J Appl Polym Sci 88: 1676–1685, 2003

Key words: molecular weight distribution/molar mass dis-
tribution; poly(propylene) (PP); modeling; modification

INTRODUCTION

The processability of polyolefins and/or the perfor-
mance of their final products are strongly dependent on
molecular parameters such as molecular weight, molec-
ular weight distribution (MWD), and branching. Desired
values of these properties can be achieved either by
manipulation of the polymerization reactor operating
conditions or by a postreactor modification of the resin.

In particular, polypropylene (PP) produced in con-
ventional reactors has excellent mechanical properties,
but because of catalyst characteristics, it has a rela-
tively high molecular weight and a broad MWD.
These features cause high melt viscosity and elasticity,
which result in unsuitable melt flow properties. Better
control of the MWD is usually difficult and is not
economical to perform during the polymerization pro-
cess. However, it has been shown that the induction of
chain scission in the synthesized resin improves flow
characteristics because scission preferentially affects
the longer chains and narrows the MWD. At the same
time, the mechanical properties remain practically un-
changed.1,2 Chain scission is commercially achieved
by means of a process called the controlled degradation
(or controlled rheology) of PP. This is a postreactor

procedure that consists of a reactive extrusion of the
polymer with organic peroxides. These peroxides de-
compose into radicals that attack the tertiary carbon
atoms on the polymer backbone to form macroradicals
that under usual extrusion conditions, undergo scis-
sion reactions. Because each tertiary carbon on the
polymer molecule has an equal chance of being at-
tacked, larger molecules are more likely to suffer scis-
sion. As a result, the molecular weight is reduced, and
the MWD narrows.3 With this process, the polymer-
ization reactor can run at a set of optimal operating
conditions, and the undesirable properties of the vir-
gin resin can then be modified to different extents,
resulting in a wide variety of higher priced products.

The use of peroxides implies that a variety of reac-
tions occurs simultaneously. It is common practice to
make several trials on the operating conditions before
the desired product is obtained. More fundamental
studies would help to clarify how these operating
conditions affect the molecular properties of modified
resins. It would also be helpful in the design of new
products and in the optimization strategies before pro-
duction on a commercial scale.

Several authors have dealt with modeling the con-
trolled degradation of PP;4 –16 about half of them
have presented models that calculate complete
MWD.4,10,11,13,15,16 Mead16 and Triacca et al.11 used a
statistical approach with a single adjustable param-
eter, the degree of chain scission. Triacca et al.11 de-
termined this parameter from experimental average
molecular weights; Mead did not present experimen-
tal information about MWD but showed the evolution
of theoretical distributions for different degrees of
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chain scission. The statistical approach does not pro-
vide information on the time evolution of the MWD.
Suwanda et al.13 and Pabedinskas et al.10 developed
semianalytical solutions based on a kinetic scheme.
The kinetic mechanism they considered included only
peroxide decomposition, hydrogen abstraction, chain
scission, and termination by disproportionation. They
used the pseudostationary state hypothesis for the
radical species. Iedema et al.4 and Oliveira et al.15

based their model on more complete kinetic mecha-
nisms, which included peroxide decomposition, hy-
drogen abstraction, and chain scission; chain transfer;
thermal degradation; and termination by dispropor-
tionation. Oliveira’s kinetic scheme coincides with the
one we present in this article. They used the
pseudostationary state hypothesis for radical species.
They also simplified by setting the kinetic constant of
the thermal degradation reaction equal to zero, which
was a reasonable assumption for the experimental
data they tried to reproduce. Nevertheless, in the lit-
erature, we found that thermal degradation cannot be
neglected in many cases.4,6 With other considerations,
Oliveira et al. fit the model to experimental MWD by
adjusting only the peroxide decomposition constant.
To solve the model, they approximated the chain
length as a continuous variable and then solved a
system of partial differential equations. They obtained
a good approximation of the tail of high molecular
weights but large deviations in the shortest chains.
Iedema et al.’s model consists of the same kinetic steps
as our model and Oliveira’s model but differs in the
formulation of some of these steps. They solved the
model with a discrete Galerkin method. They ana-
lyzed the kinetic mechanism and fit the kinetic con-
stant with experimental MWD. They concluded that
all the kinetic steps mentioned previously were nec-
essary to reproduce the experimental data. Krell et al.6

and Berzin et al.9 also solved a complete set of kinetic
reactions, including thermal degradation and chain
transfer, but they did not model complete MWD.

In the work by Krell et al.,6 some of the authors
proposed a kinetic model that predicted average mo-
lecular weights for the controlled rheology of PP. It
was based on a kinetic mechanism proposed in earlier
publications but included relevant corrections with
respect to some of the terms of the mass balances.
What is more, the complete kinetic mechanism had
never been solved before. This model resulted in good
predictions of the experimental data obtained at dif-
ferent temperatures and screw rotational speeds.

In this work, we extend our previous mathematical
model to predict the complete MWD of PP during the
modification process given the operating conditions.
We focus on the modification taking place in an ex-
truder at isothermal conditions. To this purpose, we
make use of our previously established set of mass

balances for the reaction species and apply a trans-
form technique. By doing this, the infinite set of dif-
ferential equations corresponding to the balances of
macromolecules of chain length n, with 1 � n � �, is
transformed into a finite set of differential equations
for the transforms of the number, weight, and chro-
matographic MWDs. The chosen transform is the
probability generating function (pgf), which we de-
scribed extensively elsewhere.17 It has already been
used for the prediction of the MWD of polyethylene
both in polymerization processes and postreactor mod-
ification.18,19 The pgf transforms are defined for discrete
distributions, as the MWD is, so it is not necessary to
assume the chain length to be a continuous variable.
Besides, they require no previous insight on the shape of
the MWD. Other methods, such as the discrete Galerkin
method, require some knowledge about the MWD shape
to find an appropriate weight function.

Three different pgf’s are defined to describe the
number, weight, and chromatographic distributions.
pgf’s are integrated along residence time. Then, they
are numerically inverted with two previously tested
numerical inversion methods.20,21 This allows recov-
ery of the MWDs. The moments of the distributions
are needed as input for the pgf differential equations,
so they are calculated as functions of residence time
simultaneously with the pgf’s.

In the following sections, we show a description of
our MWD model for the controlled rheology of PP and
a validation of the model results with experimental
information taken from our previous work and other
published data. Different applications of the MWD
model are also illustrated.

MWD MODEL

The kinetic mechanism considered by Krell et al.6 for
the controlled rheology of PP by peroxides at low
concentration is summarized next.

For peroxide decomposition

I ¡
kd

2Rc (1)

For scission

Pn � Rc ¡
ks

Pr � Rn�r � X (2)

For chain transfer

Pn � RrO¡
kct

Pr � Pn�s � Rs (3)
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For thermal degradation

PnO¡
ktd

Rr � Rn�r (4)

For termination by disproportionation

Rn � Rr ¡
kt

Pn � Pr (5)

The mechanism includes radical generation by ini-
tiator decomposition (eq. (1)), scission (eq. (2)), chain
transfer to the polymer [eq. (3)], thermal degradation
(eq. (4)) and termination by disproportionation (eq.
(5)), with kinetic constants kd, ks, kct, ktd, and kt, respec-
tively. In these equations, I is the initiator, Rc is the
initiation radical, P and R are polymer molecules and
macroradicals with as many monomer units as their
subscripts (n, r, s, . . .) indicate. X is an inert molecule.

The modification process is postulated to occur iso-
thermally. The equations are written in a general man-
ner avoiding the usual assumption of quasi steady
state of radicals, although we verified that in this
particular case that assumption is valid. Radicals and
macroradicals are assumed to contain only one active
site, something reasonable for a system expected to
remain far from the gel point.

pgf definitions for the number, weight, and chro-
matographic chain distributions of radicals and the
polymer must be applied to the corresponding mass
balances. In the following text, we first present these
mass balances developed for the modification per-
formed in an extruder where plug flow is assumed.
Afterward, we describe the application of the pgf’s to
this problem.

Mass balances for all the species present during the
process are shown in eqs. (6)–(9), where the indepen-
dent variable t is the residence time.

For the initiator

d�I�
dt � �kd�I� (6)

For the initiation radical

d�Rc�

dt � 2kdf�I� � �Rc�ks �
i�1

�

�i � 1��Pi� (7)

where f is the initiator efficiency.
For the polymer molecule Pn (n � 1, 2, …)

d�Pn�

dt � ks�Rc�� �
r�n�1

�

�Pr� � �n � 1��Pn�� � kct�n � 1�

� �Pn� �
r�1

�

�Rr� � kct�Rn� �
r�1

�

�r � 1��Pr�

� kct �
i�1

�

�Ri� �
r�n�1

�

�Pr� � kt�Rn� �
r�1

�

�Rr� � ktd�n � 1��Pn�

(8)

For the macroradical Rn (n � 1, 2, …)

d�Rn�

dt � ks�Rc� �
r�n�1

�

�Pr� � kct�Rn� �
r�1

�

�r � 1��Pr�

� kct �
i�n�1

�

�Pi� �
r�1

�

�Rr� � kt�Rn� �
r�1

�

�Rr� � 2ktd �
r�n�1

�

�Pr�

(9)

As the radical and polymer molecules may have any
length between 1 and infinity, the mass balance equa-
tions are infinite in number. One of the techniques we
employ in this work to overcome this difficulty is the
well-known moment technique.22,23 To this purpose,
the following moment equations must be defined [eqs
(10) and (11)].

For the ath moment of chain-length distribution of
polymer molecules (Ma)

Ma � �
n�1

�

naPn a � 0, 1, 2, . . . . (10)

For the ath moment of chain-length distribution of
radicals (Ya)

Ya � �
n�1

�

naRn a � 0, 1, 2, . . . . (11)

Replacing the sum in the second term of the right
hand side of eq. (7) by the corresponding moments
leads to eq. (12):

d�Rc�

dt � 2kd f �I� � �Rc�ks�M1 � M0� (12)

To obtain the moment balance equations for the
polymer and radicals, both sides of eqs. (8) and (9)
must be multiplied by na and then summed for all
possible values of n (n � 1, 2, . . .). After some labori-
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ous algebraic steps, eqs. (13)–(15) result, as detailed in
our previous work.6

For the ath moment of the polymer (a � 0, 1, 2, 3, …)

dMa

dt � ks�Rc���
i�2

�

�Pi� �
r�1

i�1

ra � �Ma�1 � Ma�� � kct

� �Ma�1 � Ma�Y0 � kctYa�M1 � M0� � kctY0 �
i�2

�

�Pi� �
r�1

i�1

ra

� ktYaY0 � ktd�Ma�1 � Ma� (13)

For the ath moment of the radical (a � 0, 1, 2, 3, …)

dYa

dt � ks�Rc� �
i�2

�

�Pi� �
r�1

i�1

ra � kctYa�M1 � M0�

� kct �
i�2

�

�Pi� �
r�1

m�1

raY0 � ktYaY0 � 2ktd �
i�2

�

�Pi� �
r�1

i�1

ra (14)

where

�
i�2

�

�Pi� �
r�1

i�1

ra

� �
M1 � M0 if a � 0
1
2 M2 �

1
2 M1 if a � 1

1
3 M3 �

1
2 M2 �

1
6 M1 with M3 � �M2

M1
�3

M0 if a � 2

(15)

As we explain later, the zeroth, first, and second
moments are necessary for the pgf calculations. Equa-
tions (6) and (12)–(15) must be solved together with
the pgf equations.

pgf transformation

pgf’s (�i (z)) are defined as

�a�z� � �
n�0

�

pa�n�zn a � 0, 1, and 2 (16)

where z is the pgf dummy variable, n is the macro-
molecule chain length, and pa(n) is a probability. We
define three different probabilities, indicated with the
subscript a � 0, 1, and 2, which are equivalent to the
number, weight, and chromatographic fraction of the
macromolecules of chain length n, respectively. When
each of these probabilities is used, the resulting pgf is
the transform of the number, weight, and chromato-

graphic distribution. A detailed explanation is found
elsewhere.17–19 Through appropriate numerical inver-
sion of these transforms, the corresponding entire
MWDs can be obtained.

pgf’s are defined for both polymer and radical dis-
tributions, for which we use the symbols �a(z) and
�a(z), respectively.

The pgf balance equations for polymer and radical
distributions are obtained by transforming term by
term the balances for Pn and Rn., respectively. The pgf
transforms of several individual balance terms can be
found in a pgf transform table we presented previously17

or by following the procedure indicated in ref. 17. A
reduced version of this table for this system is shown
in Table I. In this table, all variables of the balance
term that do not depend on the chain length are in-
cluded in a constant �.

To obtain the transforms of the radical and polymer
distributions, eqs. (9) and (8) are transformed, respec-
tively. Finally, the following expressions are obtained.

For the pgf balance of the radical-number distribu-
tion [�0(z)]

	�Y0�0�z��

	t �
ks

z � 1 �Rc��M0�0�z� � M0� � kctY0�0�z��M1

� M0� �
kct

z � 1 �M0�0�z� � M0�Y0 � ktY0Y0�0�z�

� 2
ktd

z � 1 �M0�0�z� � M0� (17)

For the pgf balance of the polymer-number distri-
bution [�0(z)]

	�M0�0�z��

	t � ks�Rc�� 1
z � 1 �M0�0�z� � M0�

� �z
	�M0�0�z��

	z � M0�0�z��� � kctY0

� �z
	�M0�0�z��

	z � M0�0�z�� � kctY0�0�z��M1 � M0�

� kctY0

1
z � 1 �M0�0�z� � M0� � ktY0�0�z�

� ktd�z
	�M0�0�z��

	z � M0�0�z�� (18)

For the pgf balance of the radical-weight distribu-
tion [�1(z)]

	�Y1�1�z��

	t �
ks

�z � 1�2 �Rc��M1�1�z��z � 1� � z�M0

� M0�0�z��� � kctY1�1�z��M1 � M0� �
kct

�z � 1�2
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� �M1�1�z��z � 1� � z�M0 � M0�0�z���Y0 � ktY1�1�z�Y0

� 2
ktd

�z � 1�2 �M1�1�z��z � 1� � z�M0 � M0�0�z��� (19)

For the pgf balance of the polymer-weight distribu-
tion [�1(z)]

	�M1�1�z��

	t � ks�Rc�� 1
�z � 1�2 �M1�1�z��z � 1�

� z�M0 � M0�0�z��� � �z
	�M1�1�z��

	z � M1�1�z���
� kctY0�z

	�M1�1�z��

	z � M1�1�z�� � kctY1�1�z��M1 � M0�

� kctY0

1
�z � 1�2 �M1�1�z��z � 1� � z�M0 � M0�0�z���

� ktY1�1�z�Y0 � ktd�z
	�M1�1�z��

	z � M1�1�z�� (20)

For the pgf balance of the radical chromatographic
distribution [�2(z)]

	�Y2�2�z��

	t �
ks

�z � 1�3 �Rc���z � z2�2M1�1�z�

� �z2 � z�M0�0�z� � �z2 � 2z � 1�M2�2�z� � �z2 � z�M0�

� kctY2�2�z��M1 � M0� �
kct

�z � 1�3 ��z � z2�2M1�1�z�

� �z2 � z�M0�0�z� � �z2 � 2z � 1�M2�2�z�

� �z2 � z�M0�Y0 � ktY2�2�z�Y0 � 2
ktd

�z � 1�3

� ��z � z2�2M1�1�z� � �z2 � z�M0�0�z�

� �z2 � 2z � 1�M2�2�z� � �z2 � z�M0� (21)

For the balance of the pgf of the polymer chromato-
graphic distribution [�2(z)]

	�M2�2�z��

	t � ks�Rc�� 1
�z � 1�3 ��z � z2�2M1�1�z�

� �z2 � z�M0�0�z� � �z2 � 2z � 1�M2�2�z� � �z2 � z�M0�

� �z
	�M2�2�z��

	z � M2�2�z��� � kctY0

� �z
	�M2�2�z��

	z � M2�2�z�� � kctY2�2�z��M1 � M0�

� kctY0

1
�z � 1�3 ��z � z2�2M1�1�z� � �z2 � z�M0�0�z�

� �z2 � 2z � 1�M2�2�z� � �z2 � z�M0� � ktY2�2�z�Y0

� ktd�z
	�M2�2�z��

	z � M2�2�z�� (22)

As shown in the pgf balance equations, the integra-
tion variable is the product of the pgf by a moment.
This is done for convenience in the numerical resolu-
tion. After integration, the pgf values are calculated
with these integration variables and the moments,
whose balances are integrated together with the pgf
ones.

TABLE I
Reduced pgf Transform Table

Balance term, n 
 0 Pgf transform

d��Tn��

dt
d�Ua	a�z��

dt

�[Tn] �Ua	a(z)

�n[Tn] ��z
	�Ua	a�z��

	z
� �MWT0

MWM
�a�1�

� ¥m�n�1
� [Tm] gst�a� � �

�

1 � z
�U0 � �U0	0�z��� a � 0

�

�1 � z�2 ��z � 1��U1	1�z�� � z�U0 � �U0	0�z���� a � 1

�

�1 � z�3 ���z � 1�2�U2	2�z�� � 2z�z � 1��U1	1�z�� � z�z � 1��U0	0�z�� � z�z � 1�U0� a � 2

T � polymer (P) or radical (R) molecule macroradicals with as many monomer units as its subscript indicates; Ua �
polymer or radical moment of order a (a � 0, 1, 2) (Ma or Ya); MWM � monomer molecular weight; MWT0

� molecular weight
of a macromolecule of chain length 0 (in this case, MWT0

� 0); �a(z) � polymer or radical pgf (with a � 0, 1, or 2) (�a(z) or
�a(z)).
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pgf model resolution

The system of equations formed by eqs. (6), (12)–(15),
and (17)–(22) was solved by means of Gear’s method24

for stiff systems. Partial derivatives with respect to z
that appear in pgf balances were discretized by back-
ward finite differences. The kinetic parameters in-
volved in these equations were obtained as a fine
tuning of those reported in our previous model.6

These parameters were adjusted to fit experimental
average molecular weights. It is important to mention

Figure 1 Experimental and calculated weight MWDs of the modified resin for different peroxide concentrations with both
inversion methods: (�) virgin resin, (‚) 200 ppm, (E) 400 ppm, (- - -) Stehfest inversion method, and (—) Papoulis inversion
method.

TABLE II
Kinetic Parameters

Kinetic constant A (L mol s) E (cal mol)

Efficiency, f � 0.68 — —
kd 1.98 
 1012 29,700
ks 1 
 109 20,000
kct 5.49 
 103 10,658
ktd 0.12 18,646
kt 3.5 
 108 19.87

A � pre-exponential factor; E � activation energy.
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that no further adjustment was made to improve the
fitting to experimental MWDs. The kinetic parameters
are presented in Table II. With these values, we veri-
fied that the quasi steady state approximation for rad-
icals is valid for this system. To maintain generality,
we decided to continue with the more rigorous set of
equations where the approximation is not used.

The first three moments of the polymer MWD and
the three pgf’s of the virgin resin are required as initial
conditions for the set of equations to be solved. The
moments are calculated from the average molecular
weights and the mass of the polymer to be modified,
and the pgf’s are calculated from the virgin resin
MWD, as detailed elsewhere.19 We consider that no
radicals are present in the virgin resin; therefore, the
corresponding pgf’s are equal to zero at the start of the
reaction. Other information needed to solve the model
includes the initial peroxide concentration, tempera-
ture, and residence time.

The integration of the pgf balance equation yields
the number, weight, and chromatographic transforms
of both polymer and radicals [�0(z), �1(z), and �2(z)
and �0(z), �1(z), and �2(z)] as functions of the resi-
dence time and z. These quantities serve as data for the
inversion algorithms, in our case Papoulis’s and Steh-

fest’s algorithms.25–27 These are Laplace transform in-
version methods that we adapted for the inversion of
the pgf of MWD.20,21 When �0(z) or �0(z) is inverted,
the corresponding number MWD is obtained directly.
Inversion of �1(z) or �1(z) and �2(z) or �2(z) results in
weight and chromatographic MWDs of the polymer or
radicals, respectively. In this way, the three distribu-
tions are obtained independently of each other, atten-
uating the noise propagation typical of the high-mo-
lecular-weight tail, when the weight MWD is obtained
from the calculated number distribution or when the
chromatographic distribution is obtained from the cal-
culated weight MWD.

RESULTS AND DISCUSSION

Model results were validated with experimental data
obtained in our labs6 and with other experimental
information taken from the literature.7,8,28 Our data
corresponds to the degradation of PP impregnated
with the peroxide initiator 2,5-dimethyl-2,5-bis(t-butyl
peroxy)hexane in a single-screw extruder at isother-
mal conditions. Experimental data corresponding to
runs at a rotational speed of 40 rpm, 207°C, and initial

Figure 2 Experimental and calculated chromatographic MWDs of the modified resin for different peroxide concentrations
with both inversion methods: (�) virgin resin, (‚) 200 ppm, (E) 400 ppm, (- - -) Stehfest inversion method, and (—) Papoulis
inversion method.
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peroxide concentrations of 0, 200, and 400 ppm were
used.

Figures 1 and 2 show the weight and chromato-
graphic MWDs of the product samples for 200- and
400-ppm initial peroxide concentrations. The rota-
tional speed of 40 rpm corresponds to a residence time
of 70 s. Symbols correspond to experimental data, and
curves correspond to theoretical predictions. The or-
dinate labels Wi and Ci in the figures stand for the
weight and chromatographic fractions, respectively.
An increment in peroxide concentration produces a
shift in the peak to the left and removes the high-
molecular-weight tails, whereas the low-molecular-
weight region remains practically unaffected, result-
ing in a narrower MWD. These changes are more
evident in the chromatographic distribution (Fig. 2),
where the higher molecular weights are stressed. The
calculated distributions show that the model is able to
predict the experimental trends. We remark again (see
pgf model resolution section) that no parameter ad-
justment was performed to fit the calculated distribu-
tions to the experimental ones.

We present in Figures 1 and 2 the MWDs calculated
with the two inversion methods. Stehfest’s method
slightly underestimates the height of the curve peaks,
but the results are in general equivalent with both

inversion methods. As advised elsewhere,29 it is better
to perform the transform inversion with more than
one method to improve the chances that anomalous
behavior of one method with a particular numerical
problem can be identified as such.

Although the predicted MWDs are very similar to
the experimental ones, for the chromatographic distri-
bution negative values are predicted for the highest
molecular weights. This is due to the fact that the
inversion methods have difficulties in following sud-
den changes in curve slopes, as happens in this case.
Nevertheless, these wrong values can be easily iden-
tified and disregarded.

Figures 3 and 4 show the evolution in time of the
chromatographic MWDs for the resin modified with
200- and 400-ppm initial peroxide concentration, re-
spectively. A rapid decrease in the higher molecular
weights was observed during about one or two half-
lives of the peroxide. In this period, 50–75% of the
peroxide decomposed into primary radicals that pref-
erentially caused scissions of the longer polymer
chains.7 The MWDs underwent practically no further
change after about four times the half-life of the per-
oxide. This is in good agreement with reported exper-
imental results.7 In our system, the peroxide half-life
at the operating temperature was 11.55 s.

Figure 3 Predicted time evolution of the chromatographic MWD for a peroxide concentration of 200 ppm with the Papoulis
inversion method: (�) virgin resin and (‚) experimental at a reaction time of 70 s, or six half-lives (t1/2).
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In Figure 5, we show another application of the
model, the study of the effect of the reaction temper-
ature. All calculated distributions corresponded to 11
half-life periods of the initiator. In every case, the
predicted curve was the same. This means that the
degree of modification was independent of tempera-
ture, provided that the amount of decomposed initia-
tor was always the same. This agrees with most re-
ported results.7,28 Few authors have reported that tem-
perature influences the degree of degradation. Ryu et
al.7 found no differences in reactions taking place at
temperatures between 190 and 210°C, which also agrees
with our model predictions, but when the modification
took place at a higher temperature (about 220°C), they
obtained a distribution richer in the intermediate molec-
ular weights. They attributed this to a larger segregation
effect of the peroxide initiator. Our model is not valid
when this effect is present. Cheung et al.8 found an
increase in degradations at two temperatures for the
same peroxide concentration but with two different per-
oxides. They concluded that it is the different reactivities
of the radicals produced by the peroxide decomposition
and not the different temperatures that are responsible
for the larger degradation. Therefore, Cheung’s results
do not contradict our model calculations.

The fact that the modification depends on the
amount of decomposed initiator, according to our re-
action model, was also verified by performance of the
simulations with different temperature profiles and
the recycling of the modified polymer, with the total
amount of initiator kept constant. If all the initiator
was allowed to react, the curves obtained were iden-
tical to the ones already shown for the final product.

CONCLUSIONS

In this article, we proposed a model for the calculation
of MWD in the controlled degradation of PP. We
applied pgf’s to the mass balance equations that de-
scribe the peroxide modification of PP in an extruder.
In this way, we were able to describe the number,
weight, and chromatographic MWD of the modified
polymers.

Numerical inversion of the transformed variables
allowed a very good recovery of the entire MWDs, as
compared with the experimental distributions mea-
sured by size exclusion chromatography. The two nu-
merical inversion methods we used gave results of
comparable quality, indicating that no bias was intro-
duced by the inversion method.

Figure 4 Predicted time evolution of the chromatographic MWD for a peroxide concentration of 400 ppm with the Papoulis
inversion method at a temperature � 207°C: (�) virgin resin and (‚) experimental at a reaction time of 70 s, or six half-lives.
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Therefore, the use of pgf transform is an attractive
alternative to other numerical methods because no
previous knowledge of the distribution and no pa-
rameter adjustment is required at that stage of cal-
culation.

The model predicts a dependence of the MWD of
the modified resin on time and temperature that is
consistent with literature data.
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